Automatic spectral analysis with time series models
نویسنده
چکیده
The increased computational speed and developments in the robustness of algorithms have created the possibility to identify automatically a well-fitting time series model for stochastic data. It is possible to compute more than 500 models and to select only one, which certainly is one of the better models, if not the very best. That model characterizes the spectral density of the data. Time series models are excellent for random data if the model type and the model order are known. For unknown data characteristics, a large number of candidate models have to be computed. This necessarily includes too low or too high model orders and models of the wrong types, thus requiring robust estimation methods. The computer selects a model order for each of the three model types. From those three, the model type with the smallest expectation of the prediction error is selected. That unique selected model includes precisely the statistically significant details that are present in the data.
منابع مشابه
کاربرد آنالیز طیفی بیزی در تحلیل سریهای زمانی نورسنجی
The present paper introduces the Bayesian spectral analysis as a powerful and efficient method for spectral analysis of photometric time series. For this purpose, Bayesian spectral analysis has programmed in Matlab software for XZ Dra photometric time series which is non-uniform with large gaps and the power spectrum of this analysis has compared with the power spectrum which obtained from the ...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Instrumentation and Measurement
دوره 51 شماره
صفحات -
تاریخ انتشار 2002